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Abstract—The known fundamental solution of the heat-conduction equation in the form of Poisson's
integral is obtained by summing-up particular similarity solutions derived with the help of a similarity
group. As these similarity solutions do not satisfy the initial data, then the integral condition is obtained
from which the arbitrary constant of a general solution is determined. Then the solution in the form
of Poisson’s integral is shown to satisfy approximately the initial condition in the form of the dis-
continuous step function approximating the initial function. This is one of the drawbacks of the
fundamental solution of the classical heat-conduction equation.

The paradox on an infinite “heat propagation velocity” is discussed.

Analysing the isotherm behaviour and using Green’s theorem, the general non-linear wave equation
is derived here in which the speed of isotherm propagation along the normal is used as an experimental
parameter. The relationship between this speed and thermal diffusivity is shown. The different particular
cases of this wave equation are studied. Some wave equation solutions are shown to correspond to those
of the non-linear parabolic equation.

Then, the derivation is given of the wave heat conduction equation from the point of view of molecular
kinetic considerations. The conception on time relaxation is generalized using the Maxwell method
and taking into account the correlation between components of a heat velocity of atoms of molecules.

NOMENCLATURE
T, temperature;
t, time;;
X, y, z, Cartesian coordinates;

K, thermal diffusivity;
C,,  isobaric heat capacity;
P density;

A thermal conductivity;

&,n, ¢, thermal velocities of atoms and molecules;
R, universal gas constant.

1. ON INCOMPLETENESS OF THE FUNDAMENTAL
SOLUTION TO THE HEAT-CONDUCTION EQUATION
CONSIDER the problem on heat propagation in an
infinite region. One-dimensional statement of the prob-
lem requires integration of the following partial
equation

A A2
%77" = (BTZ (1.1)
at the boundary
x=—oc T=0, x=4w T=0 (12)
and initial
t =0, T = @(x) (1.3)

conditions.

It can easily be shown that equation (1.1) is invariant
with respect to group transformations governed by the
following infinitesimal operators

X—Ta+2t8+ g
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We shall consider the solution governed by the

operator X ;. It is of the form
xZ
T=1""%f(n) n=-- (14

This solution is also referred to as a similarity solu-
tion, since the operator X; determines the similarity
group which can be found through the analysis of
dimensions based on the so-called n-theorem.

Transition from two independent variables x and ¢
to one 7 is equivalent to reduction of the number of
variables in the space of variables T, x, t. This is why
boundary conditions (1.2) and (1.3) are not invariant
with respect to the group of transforms governed by
the operator X, .

Really, boundary conditions (1.2) in the new space
of variables will be

(1.2a)

It will be seen later that boundary condition (1.2a)
is sufficient for integration of the ordinary differential
equation obtained upon substitution of (1.4) into (1.1).
Initial equation (1.3) is therefore unnecessary since the
point t = O transits into the point # = o, and what is
more, the form of solution (1.4) does not allow the
function ¢(x) to be found in it.

Substitution of (1.4) into (1.1) gives ordinary differ-
ential equation to determine the function f

n(@AKf"+ 1)+ 3(4Kf"+ f) = 0.

With regard for boundary conditions (1.2a) its solu-
tion takes the form

(L1.5)

f — Ae—n/4K
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Now the solution of (1.1) is re-written as
T(x,t) = ,fi g ek = A% g TNAR (1.6)
Jt NA
The last formula includes an arbitrary constant 4
which, strictly speaking, should be determined from the
initial condition. But, as was pointed out above, in the
similarity solutions, the function ¢(x) cannot be found
at t = 0. So, the use of initial equation (1.1) gives an
additional integral condition for determination of the
constant 4. This approach is widely used when cal-
culating viscous jets.
Re-write (1.1) as
oT *T
Cop—=~rA—

ot ax?

and integrate it over the whole range of the variable x

™ ('? . o ('\ZT
yikC}pﬁrdx==AJ‘15;7dx. (1.7)
Assume also that
T oT
RS NI N

Then equation {1.7) turns into

j C,pTdx = Q = const. (1.8)

-
which means that at any time instant the amount of
heat within the integration range becomes constant.

Integral condition (1.8) is used to determine the
constant 4. Now formula (1.6) assumes the final form

oo = Qe taKn
U T2C, pJ(Kn)

Since the operators X, and X3 govern the transfer
group over x and 1, the last formula may be written as
(x—3)

Qe 4Kt —14)
71Lt):2C}pJ[KnU—4d]

with &, and ¢, being some constants.

The question arises how to determine the amount of
heat Q. The considerations are as follows. Let at the
instant t = ty the temperature T = ¢(x), ¢(x) being a
limited function. The constant governs some point at
the axis x. In the vicinity of this point we choose some
domain of the width d¢.

Then within d& we substitute the function ¢(x) for
a constant equal to ¢(¢). Now compose the product

Q= C,pp(&)dE = const = Q (1.10)

(1.9)

where Q; is the amount of heat introduced at the instant
t = 1o in the vicinity of the point x = ¢ Then formula
(1.9) governs the temperature in the whole domain, the
temperature being affected by a point heat source.

It should be emphasized here that for the infinitesimal
difference r — ¢, the temperature T(x, t) is finite at rather
high values of (x—¢), ie. the temperature stabilizes
immediately upon the introduction of a point heat
source.

This seems to be a paradox, since any physical
process possesses some inertia.

[t is reported apropos of this that the velocity of heat
transfer is infinite. This conclusion cannot be con-
sidered perfectly correct since, as we know, none of the
authors has defined the concept of heat-transfer
velocity.

The above fact is a sound shortcoming of the
classical heat conduction equation giving rise to the
majority of works trying to eliminate the paradox.

Compose the sum

Qe =9 aKU=t0)

7 2C.p/[Kn(t—10)]

As initial equation (1.1) is linear this sum, at the same
time, presents a solution. In case of the infinite sum
this means that at the instant t = t, point heat sources
of the power Q; are located along the whole axis
— L EXE +LC.

Within all the intervals d¢ the function ¢(x) is sub-
stituted by the constant values equal to ¢(&). Taking
account of (1.10), the last formula may be re-written as

(/J(g:) dé e” [(x = &) I4K(E —th)]

Tix, 1) =

2 /[Kn(t—15)]

Upon substituting summation for integration, we
obtain solution to equation (1.1) in the form of the
well-known Poisson integral

T(x,1)

1 ty (p(f)e*[(.K*é)l,wtl((r—-l”)]

T 2J(Kn) |-, Jit—=1to)
It is being proved in the text-books of mathematical
physics that solution (1.11) satisfies equation (1.1) in a
single-valued way. Prove that at tr — 1, temperature
T(x,t) = @(&). Under these conditions the value
y=(l/t—1o) will be a major parameter. Then, in
accordance with the known asymptotic estimates
~ REESE A

(We@e di%Jk>w@HJvm K ge,

=)
Let x—¢&; >0and x—¢&, <0, and &, ¢, is com-
mensurable with d&. Within d¢ the function ¢(x) was
approximated by a constant equal to ¢(). ¢(¢&) there-
fore, may be taken from the above integral.
Introduce the new variable

0 [C_ﬁli
V' (4K)
which tends to infinity at 1 — ty and (x—¢) # 0. Then
el . (&) [ .
T(x,tg) = —— e dp = — e dn
Jr NI
= ().

Usually, when satisfying the initial condition, the
function T(x, to) transits into ¢(x). In our case, however,
T(x, t)tends to ¢(¢) that within d¢ is equal to a constant
approximating ¢(x). To put it bluntly, at t — ¢, solution
(1.11) tends to the discontinuity function (&) approxi-
mating the smooth function ¢(x), each hatched area
(Fig. 1) being proportional to the amount of heat
generated by the point source in the vicinity of the
point &.
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F1G. 1. Approximation of initial function in the Poisson
integral.

Such an unusual satisfaction of the initial condition
in the fundamental solution should be recognized as
one more shortcoming in the classical heat conduction
equation.

The above shortcomings may presumably take place
only at infinite integration ranges. For a finite domain
the solution of equation (1.1) is sought by the variable
separation method, and does not possess these defects.
It is clear physically since in case of a finite heating
region we fail to feel the inertia of the process. This is,
presumably, why none of the experimentators measur-
ing a heat-transfer coefficient in finite regions en-
countered the above paradox.

It is known that derivation of equation (1.1) is first
of all connected with the name of Fourier who was
the first to apply the mathematical analysis to the
theory of heat in 1807. Later, Ohm’s theory of electricity
flow has been copied from Fourier’s theory of heat. At
the moment, however, after the works of famous
Maxwell wave concepts have been developed in the
theory of electromagnetic phenomena. Their mech-
anical analogues are oscillations of a homogeneous
harmonic oscillator described by the following ordinary
differential equation

d?x  dx
mﬁ+av+bx = F(1).

i (1.12)

Here x is a shift from the equilibrium ; m is the oscillator
mass; a is the extinction coefficient; w is angular
frequency; F(t) is the compelling force.

The above coeflicients have respective electromag-
netic analogues.

Comparison of equations (1.1) and (1.12) shows the
absence of the second time variable in the classical
heat-conduction equation which means the absence of
the mass analogue in the theory of heat. Therefore, all
the processes described by (1.1) will be inertialess.

The problem arises on the possible ways of improving
equation (1.1) in order to eliminate its shortcomings.
The simplest way is to take account of the nonlinear
term due to temperature dependence of the thermal
conductivity.

In[1]similarity solutions are obtained for the power-
law dependence of the thermal conductivity on tem-
perature. In these solutions the process of instantaneous
heat distribution is somewhat smoothed over depend-
ing on the power exponent of the above functional
relation. In the case, however, because of the non-
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linearity of the initial equation, we cannot compose
the sum of partial similarity solutions, and the initial
condition cannot be satisfied even in the above sense.
Moreover, the experiments show that for fluids, for
example, the temperature dependence of the thermal
conductivity is weak.

As far back as 1939, Shuleikin noted that in the
atmosphere heat is transferred by air masses possessing
inertia, and sharp antiphase temperature and pressure
fluctuations are accounted for by the generation of
thermobaric waves strongly affecting the weather on the
Earth. In his opinion the weather changes in the form
of thermobaric seiche. In winter time air from the
continent flows to the sea close to the ground, and on
the top warm air flows from the sea to the continent.
These two different flows interact in such a way that
in the lower layer temperature conditions obey, in
Shuleikin’s opinion, the hyperbolic heat-transfer con-
ditions. Shuleikin tried to explain this idea both theor-
etically and experimentally. To this aim, based on the
observations he composed the charts, wherefrom it can
easily be seen that the isotherms behave like sound
waves. Up to the present time Shuleikin has accumu-
lated vast experimental material proving his ideas [2].

2. ON THE ANALYSIS OF TEMPERATURE FIELD
ISOTHERMS

Initial derivations of the hyperbolic heat-conduction
equation are connected with the names of Cattaneo [ 3],
Vernotte [4] and Luikov [5]. These authors have used
different approaches, but applied to one general idea
implying that the heat flux is rélaxing, the relaxation
time being determined according to Maxwell. Re-
alization of this idea provides the LHS of equation (1.1)
with the second time derivative of temperature, the
coefficient in this term being exactly equal to the
relaxation time which is usually rather small.

This result contradicts Shuleikin’s observations for
dense atmospheric layers. And what is more, not long
ago Antonishin from the Heat and Mass Transfer
Institute of the Byelorussian Academy of Sciences
superimposed the solution of the hyperbolic heat-
conduction equation on experimental heat-transfer
data for a surface with a dispersed heat-transfer agent
at low Fourier numbers. The agreement between the
theory and experiment was fine. But since under these
conditions the relaxation time is also small, he sub-
stituted it, purely tentatively, by the time of temperature
levelling between gas and particles and gave an al-
gorithm to calculate this value [6]. This is one more
indication to the existence of wave heat transfer in
nature.

The approach suggested by Predvoditelev from the
Moscow State University to derive hyperbolic heat-
conduction equation is different. He fully refused from
composing heat balance when transiting to continuum
equations and was the first to apply the Riemann and
Helmholtz ideas concerning the theory of manifolds to
heat phenomena [ 7]. He represents manifold of thermal
states by the temperature surfaces T = T(x, y, z, 1) and
thermal conductivity A = A(x, y, z, t). The generation of
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equal-temperature surfaces moving about the medium
involves the onset of heat-transfer process. The velocity
of such a surface is defined by the formula
¢ 0T

ar

T

on

To understand the formula, we should point it out
that the surface velocity is defined as the ratio of the
infinitesimal increment of the normal, to infinitesimal
time interval. Well then, by using Green’s formula and
the properties of expanding Riemann's manifold
Predvoditelev derives different forms of wave heat-
conduction equations.

Predvoditelev’s considerations have some limitation
concerning the constant velocity g. With the limitation
such as that, the diversity of the forms of the heat-
conduction equation stems from the diversity of the
geometric properties of Riemann's manifoid.

By assuming that at each point of the thermal
manifold the local heat balance may be calculated by
the classical heat-conduction equation, we can easily
notice the relation between the speed of propagation
of equal-temperature surface and thermal conductivity.
Really, by expressing ¢ T/0t of (2.1) in terms of three-
dimensional equation (1.1), we arrive at
div(dgrad T)

T o
Cnﬂ A

R

g = 2.

(2.2)

1t follows from this formula that 2 = 4(x, y, z, 1) and
g = const is a particular case of thermal manifold.

In a general case it should be considered that
g =g(x,y,z1). Then by narrowing the geometric
manifold properties diverse forms of the heat-conduc-
tion equation may be obtained due to diversity of the
functions of g. In point of fact, these are the same
geometrical properties of thermal manifold in an
implicit form.

Assume that the temperature field is prescribed for
the surfaces of equal temperatures T(t, n) = const
moving in the space at the velocity g. For these surfaces,
we have a right to write

(’T dn T

AT = 4 o =
dt on

or, with account for g = dn/dr, finally obtain

(T éT
+9—--=0

[ (2.3)
ot on

Differentiation of equation (2.3) over ¢t and n with
further elimination of the mixed derivative 8>T/éton
from the above equations give

T (og ag\éT  ,&°T
or? ot on 9 o

Remembering (2.1), express ¢ T/cn in terms of ¢ T /0t
and obtain

&T [eg 1og\eT T
ar? '

In the equation obtained the right-hand part of it is
somewhat unusual since in mathematical analysis the
derivatives over the coordinates rather than those over
the normals are dealt with. But this shortcoming can be
eliminated.

Integrate the left- and right-hand parts of (2.4) over

the volume
T g 10g\eT
e -7
Ct noog ety

ey
- UJ P de (25
J on’
Then integrate the RHS of (2.5) by parts
e AT 0 e OT
- e Lo
in JI T én en

In the equality obtained the surface integral may
again be expressed through the volume integral using
Green’s function.

Fortwofunctions W = W(x, y, z,
the latter is of the form

) (rf (‘P((/)
Y —ds=
JJ an JJJ én én

2
&t

tyand ¢ = @(x, y,z,1),

e

('\

Vie—+-—5+—5.
axt oyt gt

In our case ¥ = ¢ and ¢ = T. Accordingly, we
shall have

o ap .
I= JU g > dv = JJJ ¢*V:Tde.  (26)
cn

Now re-write equation {2.5) in the form

e -2

g

X

= JJJ g>V3Tdr.

By sparing from integrals through usual operation,
we obtain the following differential heat-transfer

equation
T /8 1ég\cT
Y L N e
ct on g at o

If g dependence on the coordinates and time is
implicit, i.e. g = g(T), the latter equation assumes the
form

2.7

arT dg aT l aT T e
ViT. 28
o dT <8n ot > (28)
This is a nonlinear wave equation with the isotherm
speed propagation g = ¢(T) as the only experimental
coefficient which is related with thermal conductivity,
heat capacity and density of material by formula (2.2). If

T oT

(q g«

=0 (2.9
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equation (2.8) degenerates into nonlinear wave equa-
tion whose form coincides with nonlinear acoustic

equation
(')ZT 2v72
el V*T. (2.10)

Equation (2.10) may be transformed into a telegraph
equation by assuming

oT
2T = CYT) - A(T) o .11
9= ViT' '
Then (2.10) becomes
1 &*T aT CXT)
— = V2T. 2.12
A o o T am @12

Equation (2.11) can be made more understandable
by assuming that the local heat balance may be cal-
culated by linear equation (1.1). Now substitute the
term T/t in (2.11) for the RHS of three-dimensional
equation (1.1) and obtain

2 2
oD _CD_g 2.13)
A(T)  A(T)

Suppose that the LHS of this equation vanishes at
the finite velocity g. This is equivalent to A(T) tending
to infinity which results in vanishing of the wave term
in equation (2.12) and in the following equation

_ (M)
AT
This allows the form of (2.12)
1 T aT

= KVT.

A(T) or? + ot @14)
The thermal diffusivity K for the telegraph equation
of such a form may be obtained by usual measurements,
and the difference between the classical heat-conduc-
tion and experiment may be eliminated through the
appropriate choice of the coefficient A(T).

3. ON THE CHARACTERISTICS OF EQUATION (2.10)
Consider the one-dimensional wave equation
T ,*T

T _ a0T
w9052

being one-dimensional analogue of equation (2.10).
It follows from the above conclusion that two
isotherms

3.1

aT erT

T T =0

eT T 32
E_goﬁxzo

that may be regarded as the system of two first-order
equations equivalent to (3.1), are appropriate to equa-
tion (2.10).

Indeed, differentiation of first equation of (3.2) over
x and t and elimination of the mixed derivative
0*T/oxot out of the equations obtained gives

T <8T 0T \dgo 0T ,0°T
2 Yo | =90 55
ot at ('Jx)dT O0x 0x

Due to the second equation of system (3.2) the
parentheses in the last equation vanishes, and equation
assumes the form (3.1).

Quasilinear system of equations (3.2) has two
solutions

T, = x—got = const (33)
T, = x+got = const
which can easily be verified through simple sub-
stitution.

The straight lines of (3.3) are the characteristics of
system (3.2), so in this case the families of isotherms
and characteristics coincide.

It can easily be shown that when transiting via these
lines temperature derivatives suffer discontinuity [8].
This fact controls the conditions when the process of
heat propagation is defined by (3.1).

In the wave theory the concept of phase velocity
ranks high. It would be of interest to compare this with
the concept of speed of propagation.

The equation of one-dimensional running wave is
of the form

T(x,1) = Acos(wt~kx).

Its phase function ¢(x, ) is determined as an argu-

ment of the wave function cos(wt—kx)

p(x,t) = or —kx.
The complete differential of ¢(x, 1) is

d
d<p=£

o
dt+-—dx = wdr—kdx.
or ax

From the condition for this equation to be zero,
phase velocity is defined as
dx
a K (3.4)
For the same running wave, the speed of propagation
go is governed by the formula

T
_ “(:?[7 _ w
Jo=~—7r =7 (3.5)
éx
So, for running waves the velocity g, coincides with
the phase velocity.

Consider stagnant one-dimensional wave
T(x,t) = A(x)coswt.

Its phase function ¢ = wt, and it is impossible to
find its phase velocity dx/d:. But it can easily be shown
that the speed of its propagation is defined as
wtan wt

dA

dx

Hence it appears, that a speed of propagation is a
more general concept than a phase velocity.

go =

4. GROUP PROPERTIES OF EQUATION (3.1)

The classical heat-conduction equation is known to
allow some wave solutions. Parabolic and hyperbolic
equations, therefore, should have some properties in
common.
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We shall try to determine common group properties
of the nonlinear heat-conduction equation

0T f erT
L= (kM)
8t Ox\ cx )
and of equation (3.1).

Group properties of equation (4.1) have been studied
by Ovsyannikov [9]. As for us, we should therefore
only verify the invariance of equation (3.2) with respect
to group transformations allowed by the heat-conduc-
tion equation.

I. With arbitrary K(T) and go(T) equation (3.1) and
(4.1) are invariant with respect to group transfor-
mations determined by the operators

4.1)

¥ é ¢
P e A g ER o,
' A ot

These operators govern invariant-group solutions
of the form

T = T(x+ar) 4.2)

i.e. purely wave solutions.

2. If K(T) is one arbitrary function, and g = A/t
then equations (3.1} and (4.1) allow three independent
operators

2 a é
XIZT' Xzz—‘:v’ X3 2[ +X‘_"~ (4-3}
ax t X

This means that group properties of equation (4.1)
are identical to that of the following wave equation
T A “’T
= 44
ot 44
3. Let K(T)=-¢" and g3(T) = e, equations (3.1)
and (4.1) are then invariant with respect to the trans-
formations determined by the operators

= Xymo. Xe=—teto—. (45
X ax’ i Ot N &t +FT 45
4 If K(T)= T*" and ¢&(T)= T?", equations (3.1)
and (4.1) allow operators
R 0 L
= X =S Xe=mx— T —. (&
oz Xamgo Xammx i Tom (40

The analysis made indicates to the generality of
solutions for parabolic and hyperbolic equations.
Hence, understandable is the success of work [1]
suggesting an appropriate choice of functional depen-
dence K = K(T)to eliminate the paradox of inertialess
heat propagation. And what is more, this can help in
explaining the fact, that the main equation of quantum
mechanics is a parabolic-type equation but it well
describes wave processes.

5. MOLECULAR-KINETIC GROUNDATION OF THE
PARABOLIC HEAT-CONDUCTION EQUATION
Maxwell presented a method of derivation of transfer
equations for any quantity, which does not imply the
calculation of the velocity distribution function of
molecules, at all.

The method was used for derivation of the heat-
conduction equation by the well-known naturalist
Kirchhol and Russian physicist Stankevich [10]. Their
calculations almost coincide, but when trying to obtain
a parabolic heat-conduction equation, they have made
some assumptions whose details differ.

Consider monoatomic gas with the velocity of
evident motion equal to zero. In this case heat is
transferred only by conduction. If Q is any quality of a
molecule, then the Maxwell transfer equation is of
the form

do

N—=—

ar [m (NfQH N'?Q)

)

+ é«— (Nf@}u AQ. (5.1)

Here AQ is collision integral.

Substitute @ = m{&*+n>+{?) into (5.1} and, by
taking account of the constant kinetic energy at
collision, obtain

d N
a[ﬂ(ﬁfﬁ’)]
- —{é [peF T+ >]+§;;{pn<‘zz+'? T

+ = [P EF ).

é
Since the quantity {£%+#5%+{?) is proportional to
temperature, the product p&(&*+72+ (%) is propor-

tional to the amount of heat per unit area yz. Hence,
we may introduce heat fluxes by the formulae

4x = pEE+7+ %)

s 53
gy =pn{e"+n*+0%) (53)
.= plE+*+ ).

Equation (5.2) assumes the form
&q, 0Ogq, 04,
MVICETEe ) R R

Next we are to calculate heat fluxes 4., g,, ¢,. Sub-
stitute the quantity m&(¢* + 12 + [} into (5.1} and obtain

mAQ[_rJ:ﬁZ +07]

_—[p§(52+;7 +CZ)]+ [Pﬁz E+n+1%)

+§;[EW}
+ o [PEE@TTT]. 659)

Then Stankevich makes an assumption on the ab-
sence of friction, i.e.

G =8=0

and on the steady state of a heat flux which leads to

d _
P [P+ ] = 0. (5.6)
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Without assumption for (5.6), re-write (5.5) as
mAQ[é E+n*+0]

[pé(éf+r1 +C’]+4[pé7 g+ +). 59

The LHS of equation (5.7) for maxwellian molecules
has been calculated by Boltzmann [11] and is

mAQ[E(E +n* + 7))

k
= —2J<-2;>02A2[é(62+n2+@)]- (5.8)

Using (5.8), re-write (5.7) as

pEE+n"+1%)

1

d
= —_——E—){E [pEE@+n*+ 7]

2A4 —
P / <2m

The use of Maxwellian molecule velocity distribution
gives
S—
G+t +%) =

R
+ 5 [P+ + 0] (59)

S+ =5?.
Now equation (5.9) assumes the form
T T T
pe(& +n*+ %)
d — é (p?
= —A — 24+ ] -54,—|—).
ldt[pé(é +n7*+{%)] 16x<p>

Here, also |

If the pressure p does not change from point to point,
the latter and similar equations lead to

il)
ars)
st

Substitution of the above expressions into (5.4) gives

Ay = (5.10)

=—A1

= —A1 (5.11)

ii-[/o Z+nt+ 9]

d [0gx g, 6%] 6[ 0 p}
= A, 4 —|54,p—(=
6t|: +6y+62 +8x lpax

0 0 (p 0 d(p
— 154 — |54, p—{=}]
+ay[ "’@(pﬂ%z[ ”’az(p>]
Here the first right-hand bracket is again determined

by formula (5.4) and we, finally, obtain

d — F
& [pE+n*+ 3]+ 4, e [p(E+n*+0%)]

2 sap 2 (P\]s 2 [5ap 2 (2
Cax [5A1P0X<ﬂ>] ay [5A1p5y<p>]
0 o (p

In accordance with Maxwell’s and Boltzmann’s con-
cepts, pressure is defined in terms of the thermal
velocities as

=50 +n*+ 1) (5.13)

which again leads to the state equation in the Clayperon
form

p = pRT. (5.14)

Since the visible velocities are equal to zero, the
continuity equation is reduced to the form
dp
dt —
which allows the density p to be taken from the
derivative sign in the LHS of equation (5.12).
Multiplying both sides of equation (5.12) by the
specific heat at constant volume C, and, taking into

account (5.13) and (5.14), we arrive at the heat-transfer
equation

dT+C 4 d’T
d vPAy 5 dtl

d oT\ 0 oT\ @ arT
= (o= +—{do— |+~ ho=—] (515
6x<06x>+8y<06y> GZ(AO ﬁz> (5:13)

where 4, is the thermal conductivity equal to
RC, T

The use of the relaxation time concept introduced
by Maxwell allows the following form of (5.10) [11]

Cop

Ao(T) = (5.16)

(5.17)

Here p is equilibrium pressure determined by (5.14).

At atmospheric pressure the relaxation time 7, is of
the order of 107!%s, i.e. in (5.15) the hyperbolic term
at A; may be neglected which gives a parabolic heat-
conduction equation. The smallness of the relaxation
time, in point of fact, justifies the assumption made
by Stankevich (5.6).

6. CORRELATING GAS SYSTEMS AND
HEAT-CONDUCTION EQUATION

The idea of a correlating gas system, as a logical
groundation to Maxwell’s concept, has been introduced
by Predvoditelev in his works dealing with the state
equation for condensed media [12].

The maxwellian velocity distribution of molecules
may be regarded as a generalization of Laplace-Gauss
one-dimensional distribution function for the case of
three statistic signs with no correlation between.

Indeed, find the probability of gas system residence
in the phase volume dédy d{ = dw. If n(&, n, {) is equal
to the number of molecules whose velocities are within
dw and N is the total number of molecules, then the
above probability is

n(&n,0)

f(f,'hC)= N
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Then, denote the probability of molecules resident
within the intervals d¢, dy and d{ in terms of f(&), f(n)
and f(). Assume that these probabilities are indepen-
dent. Then, in accordance with the theorem of prob-
ability product, we have:

SO = 1S fO.

Maxwell gives the following groundation to the
hypothesis of independent probabilities [ 13]: “But the
existence of the velocity ¢ in no way should affect the
existence of the velocities n and {, since all of them
are at right angles to each other and are independent
of each other.”

Let each of the above probabilities obey the Laplace—
Gauss formula

f&)=C, e,

(6.1)

flp=Cre™™, f({)=Csye™™.

Their substitution into (6.1) gives the Maxwellian
distribution

f= Ao Hetrnitin 6.2)

It follows from the above, that the maxwellian
distribution of molecule velocities' rests upon shaky
bases.

But the conclusions in favour of the universality of
the above distribution are supported by the fact that
it is obtained as one of the solutions to the Boltzmann
integro-differential equation. The Boltzmann hypoth-
esis on molecular-irregular state of a gas system is,
however, equivalent to the independence of statistic
signs which are thermal velocities of atoms and
molecules.

In other words, Maxwell’s concept (6.1) is present
in the Boltzmann equation in an implicit form.

As far back as in 1896, however, the English scientist
Burbury pointed out that the presence of rotational
degrees of freedom in a gas system may lead to corre-
lation of thermal velocity components [14]. Unfor-
tunately, this idea did not find the followers since the
problem of temperature estimation arises in the case
and, hence, the principle of uniform energy distribution
with respect to the degrees of freedom is violated.

Predvoditelev was the only one who in the above
works has introduced the correlation function of mol-
ecular velocity distribution into the theory of gases
and suggested a method of temperature estimation
without violating Boltzmann’s postulates. But at the
same time he emphasized there that this is not the only
way to solve the problem.

Another way to the solution of the above problem
can also be suggested.

Indeed, the correlation in thermal velocity com-
ponents of atoms and molecules leads to the dis-
tribution function of the following form [15]
PPNV Y

R ¢} R o3 R a3
R “ R & R
PESAENLUING S SERR OIS S < N O
R 0,0, R 0,03 R 0,04

Here R is correlation determinant, ¢, ¢,, 63 are

RMS deviations proportional to the kinetic energy
over the appropriate degrees of freedom.

Suppose that ¢,, g, and o3 are expressed in terms
of some quantity ¢, whose meaning will be revealed
later as follows

R /(R /{R )
0 :\/<MR£>G; Uz:\/('];—z’)m 03:\/<7?%>0" (6.4)

In case of isotropic correlation
Riy=Ry; = Raa = 1=,
Ry, =Ry3=Ryy= —r(l=7), R=(1—rP(1+2r).
Then, formula (6.3) with account of (6.4) assumes the
form

! [+ il 2 ‘:MHWWJJ
ST SR RS G 1 R N
2R L+r .

f=Ae 6.5)

Inmathematical statistics the correlation coefficient r
ranges from —1 to + 1, but the case may be different
for a gas system. Extend the range of r through the
following transformation

ro B
I+r 147

The parameter f will be different for different gases
and, in a general case, may be the function of tem-
perature and density. In order to find its numerical
values we should apply to the experiment.

Now the molecular velocity distribution function
assumes the form
. - [éz+nl+gl—2
f=Ae ¥ (6.6)

The latter can be reduced to a canonical form
through the solution of the third-power equation
governed by a determinant

S—1 —n —n

firy
1

4§n+n;+é§J]
+ry i

—n S—1 —-n| =0
—n -n S—1
Here
Bry
n=-——.
1471,
The roots of these equations are
S;=1-2n, S,=1+n S;=1+n

Now the canonical form of formula (6.6) is
. —;—]3(31:2+Sl»72+83;’1)
f=Ae ¥ (6.7)

It can easily be understood that if r =0,
s; = s; = 53 = 1 and distribution function (6.7) turns
into the maxwellian function, its last part being a
particular case.

Calculate the constant 4 and mean-square velocity
of thermal motion ¢? through ordinary approaches.

_ J(518283)

= 63(27[)3/2
= 3Er)i+(d=pir]e*
[1+@B—Dr][1+(1+B)r,]

3¥(r, flo.
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Assuming no intramolecular forces in accordance
with the virial theorem developed by Clausius, we
arrive at o= 1K
where K is mean kinetic energy of a molecule of gas of
specific volume v. In accordance with our predictions

Nme™?
K = - 7= FNma*¥(ry, f).

Since N is the Avogardo number, the quantity o
may be related with temperature after Boltzmann’s
postulate Nmo* = RT.

Now equation (6.8) may be re-written as

pv = P(ry, fRT. 6.9)

If ry =0, the latter equality transits into the
Clayperon equation.

To solve the above stated problem, we shall interpret
formula (6.9) as follows.

Suppose that heat is transferred frontally. Then
either chemical reactions or phase conversions may
proceed on the front surface, and the thermal con-
ductivity determined by {5.16) will fail to level tem-
perature nonuniformities.

We have a right to suppose for such a system that
pressure, density and temperature are related by equa-
tion (6.9), which is re-written as

p=po¥(r:, ) (6.10)

where py is the equilibrium pressure determined by
Claypeyron formula (5.14).

Equation (6.10) should be interpreted as an equation
of nonequilibrium process that controls the pressure
excess over equilibrium one and results from the
processes other than heat transfer only by conduction.

The use of formula (6.10) for transition from (5.12)
to (5.15) gives

6.8)

G, dT+C A4 T
P dl P ldtz

of,8T\ o/ T\ o/ 8T
=—{i—|+—{i—l+=lAd 11
c?x( é?x>+8y<;L 6y>+6z(2 az> (6.11)

ATy =¥(ry, BAo(T).

In order to correctly define the quantity 4, in this
case the pressure p in (5.17) should be determined
by (6.10), ie.

A= g

where

To

w. 6.12)

Now, in spite of the smallness of the quantity 1o,
the coefficient 4; will be finite and, in a general case,
may be a function of temperature.

It is easily understood that equality (6.14) reduces
to equation (2.14) which is obtained phenomenologi-
cally.

As to the case of molecular-kinetic grounds for
general wave equation (2.8), the derivations we have
made should be considered incomplete.

Indeed, introduction of the correlation function of
molecular velocity distribution is equivalent to the
effect of hygroscopic forces [15]. Therefore, to derive
wave equations of heat transfer, mechanical motions
similar to latent motions of moving media electro-
dynamics are necessary.

We have presented only the beginning of the above
derivations.
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LE CONCEPT D'ONDES EN THEORIE DE LA CHALEUR

Résume—On obtient la solution fondamentale classique de I'équation de la conduction thermique sous
forme d’une intégrale de Poisson en sommant des solutions particuliéres de similitude obtenues & P'aide
d’un groupe de similitude. Ces solutions de similitude ne satisfaisant pas les conditions initiales, on
obtient alors la condition intégrale & partir de laquelle la constante arbitraire de la solution générale est
déterminée. On montre ensuite que la solution sous forme d'intégrale de Poisson satisfait approximative-
ment la condition initiale sous forme de fonction discontinue en escalier approchant la fonction initiale.
C’est un des inconvénients de la solution fondamentale de I'équation classique de la chaleur.
Le paradoxe de la “vitesse de propagation infinie de la chaleur” est discuté.
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Analysant le comportement des isothermes et utilisant le théoréme de Green, on obtient ’équation
générale non-linéaire des ondes dans laquelle la vitesse de propagation des 1sothermes suivant la normale
est utilisée comme paramétre expérimental. La relation entre cette vitesse et la diffusivit¢ thermique est
établie. Les différents cas particuliers de cette ¢quation d’onde sont ¢tudi¢s. On montre que certaines
solutions de I"équation d'onde correspondent 4 celles de I'équation parabolique non-linéaire.

L'¢quation ondulatoire de la conduction thermique est alors déduite a partir de considérations de
cinétique moléculaire. Le concept de temps de relaxation est généralisé en utilisant la méthode de Maxwell
et en tenant compte des corrélations entre composantes d’une vitesse thermique des atomes ou molécules.

WELLENKONZEPT IN DER WARMETHEORIE

Zusammenfassung — Die bekannte Fundamentallésung der Wirmeleitungsgleichung in Form des Poisson-
Integrals wird durch Summierung partikulirer Ahnlichkeitsldsungen erhalten, die aus Ahnlichkeitsgruppen
abgeleitet sind. Da diese Ahnlichkeitslssungen den Anfangsdaten nicht geniigen, werden Integral-
bedingungen zugrundegelegt, aus denen die beliebigen Konstanten der allgemeinen Losung bestimmt
werden. Damit befriedigt dic Loésung in Form des Poisson-Integrals ndherungsweise die Anfangs-
bedingung in Form einer diskontinuierlichen Schrittfunktion als Nidherung fiir die Anfangsfunktion. Dies
ist einer der Nachteile der Fundamentalldsung der klassischen Warmeleitungsgleichung.

Das Paradoxon der unendlichen “Wirme-Fortpflanzungs-Geschwindigkeit” wird diskutiert.

Aufgrund der Analyse des isothermen Verhaltens und mit Hilfe des Greenschen Theorems wird die
allgemeine nicht-lineare Wellengleichung abgeleitet, worin die Geschwindigkeit der isothermen Aus-
breitung in Normalenrichtung als ein experimenteller Parameter verwendet wird. Der Zusammenhang
zwischen dieser Geschwindigkeit und dem Temperaturleitvermdgen wird gezeigt. Die verschiedenen
partikuldren Fille dieser Wellengleichung werden untersucht. Einige der Losungen korrespondieren mit
jenen der nicht-linearen parabolischen Gleichung,

Weiterhin ist die Albeitung der Wellen-Wirmeleitungsgleichung aus der Sicht molekular-kinetischer
Uberlegungen gegeben. Die Vorstellung der Zeitrelaxation ist verallgemeinert unter Benutzung der
Maxwell-Methode und unter Beriicksichtigung der Beziehungen zwischen den Komponenten einer

Wiarmegeschwindigkeit von Atomen oder Molekiilen.

BOJIHOBBIE MPEACTABJIEHWA B TEOPMHM TEIIA

AnHOTauMa — M3BecTHOEe (GyHAAMEHTAasibHOE pelleHHE YPAaBHEHHMS TEIONPOBONHOCTH B Gopme
unterpana [TyaccoHa NoJiy4eHO CyMMMPOBAHHEM 4aCTHBIX aBTOMOIE/bHBIX PELUEHNH, TIONYYEHHBIX
¢ [IOMOUILIO Tpynnbl-noao6us. Tak kak TaKHE ABTOMOZENbHBIE PEWEHHS HE YIOBIETBOPAIOT HaYalb-
HBIM HaHHBIM, TO TONYYEHO HHTErpanbHOE YC/OBHE, U3 KOTOPOrO OMNpeaenseTcs NPoH3BOIbHASA
KOHCTAHTa 00ulero pewenus. [Jajiee nokaszaHo, YTO pelleHHe B Buae uHTerpana IlyaccoHa ynosne-
TBOPSIET HAYATIbHOMY YC/0BHIO NPUOIMKEHHO B BUAE PA3PbIBHOM CTYNEHYaTON QyHKUUH anNnpOKCH
MHUPYIOLIEH Ha4yalbHY 0 QYHKLUHIO. DTO OAUH U3 HEAOCTATKOB YHAAMEHTANBHOTO PEeLUEHNs KNaccH
4YECKOro ypaBHEHHSA TEMIONPOBOIHOCTH.

O6¢cyxaaeTcs napanoke 0 ODECKOHEYHON «CKOPOCTH PACIPOCTPAHEHHSA TENUia».

AHaIM3UPYA MOBEAEHUS H30TEPM H NOJb3yAch Teopemoil 'puHa, B paboTe naH BbIBOA HeNIMHEM-
HOTO BOJIHOBOIO YpaBHeHMsi caMOro oOLUero BHAa, B KOTOPOM B KayeCTBE IKCIEPHUMEHTAJLHOIO
napamMerpa MCroJib3yeTcss CKOPOCTh PACHpPOCTPaHEHUs U30TEPMbI 110 HOPMANH. YKa3bIBAETCA CBA3b
3TOM CKOPOCTH € KOIPPULIHEHTOM TemMNepaTyponpoBOAHOCTH. M3y4aroTcsi pas/iMuHbie YacTHbIE
cAy¥an 3TOFO BOJTHOBOTO ypaBHeHus. T1oxka3aHo, YTO HEKOTOpble pelieHUs BOJNHOBOTO YpaBHEHHS
COOTBETCTBYIOT PELLEHHAM HEIIMHENHOTO NapaboINYecKoro ypaBHEHHA.

Hanee naeTcsi BbIBOI BOJIHOBOTO YPaBHEHHUA TEIUIONPOBOAHOCTH M3 MOJIEKYNAPHO KHHETHUECKHX
cooOpaxeHHit. L1 ITOrO UCMONB30OBAH METOA MaxcBenna W, yYMTbIBaA KOPPEIALHIO B COCTABJIsA-

IOLLMX TEMJIOBOH CKOPOCTH aTOMOB HJIH MOJIeKY 1, 000BILIEHO NMOHATHE BPEMEHH pENlaKCaLluu.



