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WAVE CONCEPTS IN THE THEORY OF HEAT 
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Machine-Building Institute, Moscow, U.S.S.R. 

(Receioed I October 1974) 

Abstract-The known fundamental solution of the heat-conduction equation in the form of Poisson’s 
integral is obtained by summing-up particular similarity solutions derived with the help of a similarity 
group. As these similarity solutions do not satisfy the initial data, then the integral condition is obtained 
from which the arbitrary constant of a general solution is determined. Then the solution in the form 
of Poisson’s integral is shown to satisfy approximately the initial condition in the form of the dis- 
continuous step function approximating the initial function. This is one of the drawbacks of the 
fundamental solution of the classical heat-conduction equation. 

The paradox on an infinite “heat propagation velocity” is discussed. 
Analysing the isotherm behaviour and using Green’s theorem, the general non-linear wave equation 

is derived here in which the speed of isotherm propagation along the normal is used as an experimental 
parameter. The relationship between this speed and thermal diffusivity is shown. The different particular 
cases of this wave equation are studied. Some wave equation solutions are shown to correspond to those 
of the non-linear parabolic equation. 

Then, the derivation is given of the wave heat conduction equation from the point of view of molecular 
kinetic considerations. The conception on time relaxation is generalized using the Maxwell method 
and taking into account the correlation between components of a heat velocity of atoms of molecules. 

NOMENCLATURE 

temperature; 
time; 
Cartesian coordinates; 
thermal diffusivity; 
isobaric heat capacity; 
density; 
thermal conductivity; 
thermal velocities of atoms and molecules; 
universal gas constant. 

1. ON INCOMPLETENESS OF THE FUNDAMENTAL 
SOLUTION TO THE HEAT-CONDUCTION EQUATION 

CONSIDER the problem on heat propagation in an 
infinite region. One-dimensional statement of the prob- 
lem requires integration of the following partial 
equation 

ST -=K?$ 
?t ,Z 

(1.1) 

at the boundary 

x=--cc T=O, x= +a2 T=O (1.2) 

and initial 

t = 0, T = dx) (1.3) 

conditions. 
It can easily be shown that equation (1.1) is invariant 

with resect to Rrouu transformations governed by the 
following infinitesimal operators 

X, = T$+2r; 
a 

+Xax 
x4=&. 

We shall consider the solution governed by the 
operator X1. It is of the form 

2 

T = t-‘!2f(iy), q=F. (1.4) 

This solution is also referred to as a similarity solu- 

tion, since the operator X1 determines the similarity 
group which can be found through the analysis of 
dimensions based on the so-called n-theorem. 

Transition from two independent variables x and t 
to one q is equivalent to reduction of the number of 
variables in the space of variables T, x, t. This is why 
boundary conditions (1.2) and (1.3) are not invariant 

with respect to the group of transforms governed by 
the operator X1. 

Really, boundary conditions (1.2) in the new space 
of variables will be 

r/= m, .f = 0. ( 1.2a) 

It will be seen later that boundary condition (1.2a) 
is sufficient for integration of the ordinary differential 
equation obtained upon substitution of (1.4) into (1.1). 
Initial equation (1.3) is therefore unnecessary since the 
point t = 0 transits into the point 4 = ZG, and what is 
more. the form of solution (1.4) does not allow the 

function (p(x) to be found in it. 
Substitution of (1.4) into (1.1) gives ordinary differ- 

ential equation to determine the function,f 

~(4Kf”ff’) + +(4&f’+f) = 0. (1.5) 

With regard for boundary conditions (1.2a) its solu- 
tion takes the form 

f = ‘4e-“!4K. 
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Now the solution of (1.1) is re-written as 

(1.6) 

The last formula includes an arbitrary constant A 

which, strictly speaking, should be determined from the 
initial condition. But, as was pointed out above, in the 
similarity solutions, the function (p(x) cannot be found 

at r = 0. So, the use of initial equation (1.1) gives an 
additional integral condition for determination of the 
constant A. This approach is widely used when cal- 

culating viscous jets. 
Re-write (1 .l) as 

and integrate it over the whole range of the variable Y 

Assume also that 

Then equation (1.7) turns into 

J‘ 

, 
C,pTdx = Q = const. 

-7 
(1.8) 

which means that at any time instant the amount of 
heat within the integration range becomes constant. 

Integral condition (1.8) is used to determine the 
constant A. Now formula (1.6) assumes the final form 

fi D -(x?!LKrl 

T(x, t) = z c 
~C,P J(Kni 

Since the operators X2 and X3 govern the transfer 
group over x and t. the last formula may be written as 

_ J\-iV 

Qe 4Kll --I.,) 

Tk t, = 2C,p,/[Kn(t-to)] 
(1.9) 

with to and t,, being some constants. 
The question arises how to determine the amount of 

heat Q. The considerations are as follows. Let at the 
instant t = to the temperature T = c?(x), (p(x) being a 
limited function. The constant governs some point at 
the axis x. In the vicinity of this point we choose some 
domain of the width dt. 

Then within dt we substitute the function v(x) for 
a constant equal to I. Now compose the product 

Qi = C,.&<)dt = const = Q (1.10) 

where Qi is the amount of heat introduced at the instant 
f = r. in the vicinity of the point x = <. Then formula 
(1.9) governs the temperature in the whole domain, the 
temperature being affected by a point heat source. 

It should beemphasized here that for the infinitesimal 
difference t-t,, the temperature T(x, t) is finite at rather 
high values of (x-0, i.e. the temperature stabilizes 
immediately upon the introduction of a point heat 
source. 

This seems to be a paradox, since any physical 

process possesses some inertia. 
It is reported apropos of this that the velocity of heat 

transfer is infinite. This conclusion cannot be con- 

sidered perfectly correct since, as we know, none of the 
authors has defined the concept of heat-transfer 
velocity. 

The above fact is a sound shortcoming of the 
classical heat conduction equation giving rise to the 
majority of works trying to eliminate the paradox. 

Compose the sum 

As initial equation (1.1) is linear this sum, at the same 
time, presents a solution. In case of the infinite sum 
this means that at the instant r = t,, point heat sources 

of the power Qi are located along the whole axis 
--3c <x< +cc. 

Within all the intervals d[ the function q(x) is sub- 
stituted by the constant values equal to v(t). Taking 

account of (l.lO), the last formula may be re-written as 

(p(~)d~e-Ilr~i)~‘~K(I-r,,l] 

T(.x, t) = I- 
2J[Kn(t-to)] 

Upon substituting summation for integration, we 
obtain solution to equation (1.1) in the form of the 
well-known Poisson integral 

It is being proved in the text-books of mathematical 
physics that solution (1.11) satisfies equation (1.1) in a 
single-valued way. Prove that at t + t,, temperature 

T(x, t) + (p(t). Under these conditions the value 
;’ = (l/t- to) will be a major parameter. Then, in 
accordance with the known asymptotic estimates 

‘il _,I,\ -3’ *L2 

! 

_,.I\--iJ’ 

(jy)q(r)e ” d< 2 q(s’)(jy)e JK d5. 
Y -* i, 

Let x-ii > 0 and -u-t1 < 0, and <,-<i is com- 
mensurable with d<. Within d< the function q(x) was 
approximated by a constant equal to v(t). (p(t) there- 
fore, may be taken from the above integral. 

Introduce the new variable 

(<-.U)V..; 
‘1 ZZ ~--~-- 

,(4K) 

which tends to infinity at t --t to and (x - 0 # 0. Then 

Usually, when satisfying the initial condition, the 
function T(x, to) transits into v(x). In our case, however, 
T(x, t) tends to q(t) that within d4 is equal to a constant 
approximating q(x). To put it bluntly, at t + t0 solution 
(1.11) tends to the discontinuity function (p(t) approxi- 
mating the smooth function (p(x), each hatched area 
(Fig. 1) being proportional to the amount of heat 
generated by the point source in the vicinity of the 
point 5. 
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FIG. 1. Approximation of initial function in the Poisson 
integral. 

Such an unusual satisfaction of the initial condition 

in the fundamental solution should be recognized as 

one more shortcoming in the classical heat conduction 
equation. 

The above shortcomings may presumably take place 
only at infinite integration ranges. For a finite domain 

the solution of equation (1.1) is sought by the variable 
separation method, and does not possess these defects. 
It is clear physically since in case of a finite heating 
region we fail to feel the inertia of the process. This is, 
presumably, why none of the experimentators measur- 
ing a heat-transfer coefficient in finite regions en- 

countered the above paradox. 
It is known that derivation of equation (1.1) is first 

of all connected with the name of Fourier who was 
the first to apply the mathematical analysis to the 
theory of heat in 1807. Later, Ohm’s theory of electricity 
flow has been copied from Fourier’s theory of heat. At 
the moment, however, after the works of famous 

Maxwell wave concepts have been developed in the 
theory of electromagnetic phenomena. Their mech- 
anical analogues are oscillations of a homogeneous 
harmonic oscillator described by the following ordinary 

differential equation 

m$+ug+bx = F(t). (1.12) 

Here x is a shift from the equilibrium; m is the oscillator 

mass; u is the extinction coefficient; w is angular 
frequency; F(t) is the compelling force. 

The above coefficients have respective electromag- 

netic analogues. 
Comparison of equations (1.1) and (1.12) shows the 

absence of the second time variable in the classical 
heat-conduction equation which means the absence of 
the mass analogue in the theory of heat. Therefore, all 
the processes described by (1.1) will be inertialess. 

The problem arises on the possible ways of improving 
equation (1.1) in order to eliminate its shortcomings. 
The simplest way is to take account of the nonlinear 
term due to temperature dependence of the thermal 
conductivity. 

In [l] similarity solutions are obtained for the power- 
law dependence of the thermal conductivity on tem- 
perature. In these solutions the process of instantaneous 
heat distribution is somewhat smoothed over depend- 
ing on the power exponent of the above functional 
relation. In the case, however, because of the non- 

linearity of the initial equation, we cannot compose 
the sum of partial similarity solutions, and the initial 

condition cannot be satisfied even in the above sense. 

Moreover, the experiments show that for fluids, for 
example, the temperature dependence of the thermal 
conductivity is weak. 

As far back as 1939, Shuleikin noted that in the 

atmosphere heat is transferred by air masses possessing 
inertia, and sharp antiphase temperature and pressure 
fluctuations are accounted for by the generation of 
thermobaric waves strongly affecting the weather on the 

Earth. In his opinion the weather changes in the form 
of thermobaric seiche. In winter time air from the 
continent flows to the sea close to the ground, and on 
the top warm air flows from the sea to the continent. 

These two different flows interact in such a way that 
in the lower layer temperature conditions obey, in 
Shuleikin’s opinion, the hyperbolic heat-transfer con- 
ditions. Shuleikin tried to explain this idea both theor- 

etically and experimentally. To this aim, based on the 

observations he composed the charts, wherefrom it can 
easily be seen that the isotherms behave like sound 

waves. Up to the present time Shuleikin has accumu- 
lated vast experimental material proving his ideas [2]. 

2. ON THE ANALYSIS OF TEMPERATURE FIELD 
ISOTHERMS 

Initial derivations of the hyperbolic heat-conduction 

equation are connected with the names of Cattaneo [3], 

Vernotte [4] and Luikov [S]. These authors have used 
different approaches, but applied to one general idea 
implying that the heat flux is relaxing, the relaxation 
time being determined according to Maxwell. Re- 
alization of this idea provides the LHS of equation (1 .l) 

with the second time derivative of temperature, the 
coefficient in this term being exactly equal to the 
relaxation time which is usually rather small. 

This result contradicts Shuleikin’s observations for 

dense atmospheric layers. And what is more, not long 
ago Antonishin from the Heat and Mass Transfer 
Institute of the Byelorussian Academy of Sciences 
superimposed the solution of the hyperbolic heat- 
conduction equation on experimental heat-transfer 
data for a surface with a dispersed heat-transfer agent 

at low Fourier numbers. The agreement between the 
theory and experiment was fine. But since under these 
conditions the relaxation time is also small, he sub- 

stituted it, purely tentatively, by the time of temperature 
levelling between gas and particles and gave an al- 
gorithm to calculate this value [6]. This is one more 
indication to the existence of wave heat transfer in 
nature. 

The approach suggested by Predvoditelev from the 
Moscow State University to derive hyperbolic heat- 
conduction equation is different. He fully refused from 
composing heat balance when transiting to continuum 
equations and was the first to apply the Riemann and 
Helmholtz ideas concerning the theory of manifolds to 
heat phenomena [7]. He represents manifold of thermal 
states by the temperature surfaces T = T(x, y, z, t) and 
thermal conductivity J. = i(x, y, z, t). The generation of 
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equal-temperature surfaces moving about the medium 
involves the onset of heat-transfer process. The velocity 
of such a surface is defined by the formula 

i7 

g=-+, 
cT 

(2.1) 

ill 

To understand the formula, we should point it out 
that the surface velocity is defined as the ratio of the 
infinitesimal increment of the normal, to infinitesimal 
time interval. Well then, by using Green’s formula and 

the properties of expanding Riemann’s manifold 
Predvoditelev derives different forms of wave heat- 

conduction equations. 
Predvoditelev’s considerations have some limitation 

concerning the constant velocity g. With the limitation 

such as that, the diversity of the forms of the heat- 
conduction equation stems from the diversity of the 
geometric properties of Riemann’s manifoid. 

By assuming that at each point of the thermal 
manifold the local heat balance may be calculated by 
the classical heat-conduction equation, we can easily 
notice the relation between the speed of propagation 
of equal-temperature surface and thermal conductivity. 
Really, by expressing iT,l?r of (2.1) in terms of three- 
dimensional equation (l.l), we arrive at 

div(1. grad 7’) 
9=- ?_ (2.2) 

c,,p “I 
?ll 

It follows from this formula that i = 2,(x, J, z, t) and 

g = const is a particular case of thermal manifold. 
In a general case it should be considered that 

y = g(x, 4: =. t). Then by narrowing the geometric 
manifold properties diverse forms of the heat-conduc- 

tion equation may be obtained due to diversity of the 
functions of g. In point of fact, these are the same 
geometrical properties of thermal manifold in an 
implicit form. 

Assume that the temperature field is prescribed for 
the surfaces of equal temperatures T(r, n) = const 
moving in the space at the velocity g. For these surfaces, 
we have a right to write 

?T dn ?T 
dT=->; +tdt7n-0 

or, with account for g = dn/dt, finally obtain 

(2.3) 

Differentiation of equation (2.3) over t and n with 
further elimination of the mixed derivative ?2T/~t~n 

from the above equations give 

Remembering (2.1). express ?T/& in terms of aT/i% 

and obtain 

In the equation obtained the right-hand part of it is 
somewhat unusual since in mathematical analysis the 
derivatives over the coordinates rather than those over 
the normals are dealt with. But this shortcoming can be 
eliminated. 

Integrate the left- and right-hand parts of (2.4) over 
the volume 

g2 ‘I; dr (2.5) 

Then integrate the RHS of (2.5) by parts 

In the equality obtained the surface integral may 
again be expressed through the volume integral using 

Green’s function. 
FortwofunctionsY = Y(x.J, 2, t)and CP = c~(x,Y, z, t). 

the latter is of the form 

In our case Y = g2 and (p = T. Accordingly, we 

shall have , 1 

I= JJJ‘ g2 E& = 
an2 

g2V2Tdr. (2.6) 

Now re-write equation (2.5) in the form 

1 

= g2V2Tdr. 

By sparing from integrals through usual operation, 
we obtain the following differential heat-transfer 
equation 

(2.7) 

If g dependence on the coordinates and time is 
implicit, i.e. g = g(T), the latter equation assumes the 
form 

This is a nonlinear wave equation with the isotherm 
speed propagation g = g(T) as the only experimental 
coefficient which is related with thermal conductivity, 
heat capacity and density of material by formula (2.2). If 
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equation (2.8) degenerates into nonlinear wave equa- 

tion whose form coincides with nonlinear acoustic 
equation 

8T 
~ = g2V2T. 
at2 (2.10) 

Equation (2.10) may be transformed into a telegraph 
equation by assuming 

aT 

g2T= C’(T)-A(T)&. 

Then (2.10) becomes 

(2.11) 

1 ?‘T JT C2(T)V2T. 

A(T) ?t2 -+at= A(T) 
(2.12) 

Equation (2.11) can be made more understandable 

by assuming that the local heat balance may be cal- 
culated by linear equation (1.1). Now substitute the 
term C7T/& in (2.11) for the RHS of three-dimensional 

equation (1.1) and obtain 

g’(T) C’(T) K. 

A(T) A(T) 
(2.13) 

Suppose that the LHS of this equation vanishes at 
the finite velocity g. This is equivalent to A(T) tending 

to infinity which results in vanishing of the wave term 
in equation (2.12) and in the following equation 

K = C’(T) 

A(T)’ 

This allows the form of (2.12) 

1 S2T c3T 
p-+X = KV’T. 
A(T) dt2 

(2.14) 

The thermal diffusivity K for the telegraph equation 
of such a form may be obtained by usual measurements, 
and the difference between the classical heat-conduc- 
tion and experiment may be eliminated through the 
appropriate choice of the coefficient A(T). 

3. ON THE CHARACTERISTICS OF EQUATION (2.10) 

Consider the one-dimensional wave equation 

d2T ,PT 
_= 
?t2 gos 

(3.1) 

being one-dimensional analogue of equation (2.10). 

It follows from the above conclusion that two 
isotherms 

?T ST 
.z+gox = 0 

?T ?T 
(3.2) 

-- 
?t 

90(2x=0 
I 

that may be regarded as the system of two first-order 
equations equivalent to (3.1) are appropriate to equa- 
tion (2.10). 

Indeed, differentiation of first equation of (3.2) over 
x and t and elimination of the mixed derivative 
i?‘T/iix& out of the equations obtained gives 

Due to the second equation of system (3.2) the 

parentheses in the last equation vanishes, and equation 

assumes the form (3.1). 

Quasilinear system of equations (3.2) has two 
solutions 

Ti = x-got = const 

T2 = x+got = const 
(3.3) 

which can easily be verified through simple sub- 
stitution. 

The straight lines of (3.3) are the characteristics of 
system (3.2), so in this case the families of isotherms 

and characteristics coincide. 
It can easily be shown that when transiting via these 

lines temperature derivatives suffer discontinuity [S]. 

This fact controls the conditions when the process of 

heat propagation is defined by (3.1). 
In the wave theory the concept of phase velocity 

ranks high. It would be of interest to compare this with 

the concept of speed of propagation. 
The equation of one-dimensional running wave is 

of the form 
T(x, t) = Acos(wt - kx). 

Its phase function ~(x, r) is determined as an argu- 
ment of the wave function cos(tut - kx) 

C,I(X, t) = cot - kx. 

The complete differential of ~(x, t) is 

dq = $d,+iz,‘dx = odr-kdx. 
?X 

From the condition for this equation to be zero, 

phase velocity is defined as 

dx w 

dt K’ 
(3.4) 

For the same running wave, the speed of propagation 
go is governed by the formula 

?T 

So, for running waves the velocity go coincides with 
the phase velocity. 

Consider stagnant one-dimensional wave 

T(x, t) = A(x) cos ot. 

Its phase function y, = wt, and it is impossible to 
find its phase velocity ax/dt. But it can easily be shown 

that the speed of its propagation is defined as 

w tan wt 
90 = dA 

dx 
Hence it appears, that a speed of propagation is a 

more general concept than a phase velocity. 

4. GROUP PROPERTIES OF EQUATION (3.1) 

The classical heat-conduction equation is known to 
allow some wave solutions. Parabolic and hyperbolic 
equations, therefore, should have some properties in 
common. 



180 V. A. BLIBNOV 

We shall try to determine common group properties 
of the nonlinear heat-conduction equation 

The method was used for derivation of the heat- 
conduction equation by the well-known naturalist 
Kirchhol and Russian physicist Stankevich [IO:]. Their 
calculations almost coincide, but when trying to obtain 
a parabolic heat-conduction equation. they have made 
some assumptions whose details differ. 

(4.1) 

and of equation (3.1). 

Group properties ofequation (4.1) have been studied Consider monoatomic gas with the velocity of 
by Ovsyannikov [9]. As for us, we should therefore evident motion equal to zero. In this case heat is 
only verify the invariance of equation (3.2) with respect transferred only by conduction. If Q is any quality of a 

to group transformations allowed by the heat-conduc- molecule, then the Maxwell transfer equation is of 
tion equation. the form 

1. With arbitrary E(T) and go(T) equation (3.1) and 

(4.1) are invariant with respect to group transfor- 

mations determined by the operators 

+;(m, +AQ. (5.1) 
,Z 1 

These operators govern invariant-group solutions 
of the form 

T = T(x&ar) 

i.e. purely wave solutions. 

(4+2) 

2. If K(T) is one arbitrary function, and $6 = A/t? 
then equations (3.1) and (4.1) allow three independent 
operators 

x1 =$ xz =;-, x3= 2r;+x;. (4.3) 

This means that group properties of equation (4.1) 
are identical to that of the following wave equation 

(4.4) 

3. Let K(T) = er and g;(T) = e’, equations (3.1) 
and (4.1) are then invariant with respect to the trans- 
formations determined by the operators 

x =‘i x = ‘1. x =: -i’.+i (45) 
’ &.’ 2 c’[ ’ 4 it PT’ ’ 

4. If K(T) L: TZm and g;(T) = T”“, equations (3.1) 

and (4.1) allow operators 

The analysis made indicates to the generality of 
solutions for parabolic and hyperbolic equations. 
Hence, understandable is the success of work [I] 
suggesting an appropriate choice of functional depen- 
dence K = I<(T) to eliminate the paradox of inertialess 
heat propagation. And what is more, this can help in 
explaining the fact, that the main equation of quantum 
mechanics is a parabolic-type equation but it well 
describes wave processes. 

Then Stankevich makes an assumption on the ab- 
sence of friction, i.e. 

@ = i”i = 0 
5. MOLECULAR-KINETIC ~ROUN~ATION OF THE 

PARABOLIC HEAT-CONDUCTION EQUATION 

Maxwell presented a method of derivation of transfer 
equations for any quantity, which does not imply the 
calculation of the velocity distribution function of 
molecules. at all. 

and on the steady state of a heat flux which leads to 

; [P&Y + V2 +4=11 = 0. 0.6) 

Here AQ is collision integral. 

Substitute Q = rn(<’ +q2i-12) into (5.1) and, by 
taking account of the constant kinetic energy at 
collsion, obtain 

+gpi(r’+a’+:T)]. (5.2) 

Since the quantity (t2 + $ +[“) is proportional to 
tem~rature, the product p<(<’ + q2 + i”) is propor- 
tional to the amount of heat per unit area yz. Hence, 
we may introduce heat fluxes by the formulae 

qX = m-t-h=T;iTJ 

qy = PV[S2 + viz + i’) 
(5.3) 

gz = pi(sL+tJz+ i”l. 

Equation (5.2) assumes the form 

&?(5’+$+rl)l = -g-2-g. (5.4) 

Next we are to calculate heat fluxes qX, yy, qz. Sub- 
stitute the quantity rn<({’ + q2 + <‘) into (5.1) and obtain 

mAQ[5(52qx + i’)] 

+~[P:i(s’+r12+~z)3. (5.5) 
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Without assumption for (5.6), re-write (5.5) as 

M2[~(5’+r12+1~1 

The LHS of equation (5.7) for maxwellian molecules 
has been calculated by Boltzmann [ 1 l] and is 

mAQ[W'+$+ i’,l 

= -2 P2&[5(52+~Z+i2)l. (5.8) 

Using (5.8), re-write (5.7) as 

P5(5” +r? + i’) 

1 
=- 

2&p & 
J( > 

+;[Pr’(i”+rl’+r211. (5.9) 

The use of Maxwellian molecule velocity distribution 
gives 

52(52+$+iz) = 54+52V2+5252 =5$. 

Now equation (5.9) assumes the form 

PM2 + v2 + iZ) 

= -AI $[p<(C2+q2+:2)]-5A,-& ; . 
0 

Here, also 

Al= (5.10) 

Ifthe pressure p does not change from point to point, 
the latter and similar equations lead to 

(5.11) 

qz= -AIz-5A,p; p . 
L) 

Substitution of the above expressions into (5.4) gives 

Here the first right-hand bracket is again determined 
by formula (5.4) and we, finally, obtain 

(5.12) 

In accordance with Maxwell’s and Boltzmann’s con- 

cepts, pressure is defined in terms of the thermal 

velocities as 

P = :P(? + v2 + iZ) (5.13) 

which again leads to the state equation in the Clayperon 
form 

p G pRT. (5.14) 

Since the visible velocities are equal to zero, the 
continuity equation is reduced to the form 

dp 0 --_ 
dt 

which allows the density p to be taken from the 
derivative sign in the LHS of equation (5.12). 

Multiplying both sides of equation (5.12) by the 
specific heat at constant volume C, and, taking into 
account (5.13) and (5.14) we arrive at the heat-transfer 

equation 

where & is the thermal conductivity equal to 

i,(T) = 2 
RC,T 

(5.16) 

A2 

The use of the relaxation time concept introduced 

by Maxwell allows the following form of (5.10) [ 1 l] 

3 Ilo AI = +- = :70 
PO 

(5.17) 

Here p is equilibrium pressure determined by (5.14). 
At atmospheric pressure the relaxation time 7. is of 

the order of 10-los, i.e. in (5.15) the hyperbolic term 
at AI may be neglected which gives a parabolic heat- 
conduction equation. The smallness of the relaxation 

time, in point of fact, justifies the assumption made 
by Stankevich (5.6). 

6. CORRELATING GAS SYSTEMS AND 
HEAT-CONDUCTION EQUATION 

The idea of a correlating gas system, as a logical 
groundation to Maxwell’s concept, has been introduced 
by Predvoditelev in his works dealing with the state 
equation for condensed media [ 121. 

The maxwellian velocity distribution of molecules 
may be regarded as a generalization of LaplaceGauss 
one-dimensional distribution function for the case of 
three statistic signs with no correlation between. 

Indeed, find the probability of gas system residence 
in the phase volume d< dq d[ = do. If n(& q, [) is equal 
to the number of molecules whose velocities are within 
dw and N is the total number of molecules, then the 
above probability is 
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Then, denote the probability of molecules resident RMS deviations proportional to the kinetic energy 

within the intervals d<, dq and d[ in terms of ,f(<), ,f(q) over the appropriate degrees of freedom. 

and,f’(<). Assume that these probabilities are indepen- Suppose that or, o2 and (r3 are expressed in terms 

dent. Then, in accordance with the theorem of prob- of some quantity 0, whose meaning will be revealed 

ability product. we have: later as follows 

f‘ct, ‘I.2 = f’(Of‘(ul)f‘(l). (6.1) 

Maxwell gives the following groundation to the 
hypothesis of independent probabilities [ 131: “But the 
existence of the velocity < in no way should affect the 
existence of the velocities q and i, since all of them 
are at right angles to each other and are independent 
of each other.” 

Let each ofthe above probabilities obey the Laplace- 

Gauss formula 

,j(<) = C, emhZL. .f’(q) = C2emh”‘, ,f’([) = Cje-hL’. 

Their substitution into (6.1) gives the Maxwellian 
distribution 

,f’ = A em h(:2+?$+.2) 
(6.2) 

It follows from the above, that the maxwellian 
distribution of molecule velocities rests upon shaky 

bases. 
But the conclusions in favour of the universality of 

the above distribution are supported by the fact that 
it is obtained as one of the solutions to the Boltzmann 

integro-differential equation. The Boltzmann hypoth- 
esis on molecular-irregular state of a gas system is, 
however, equivalent to the independence of statistic 
signs which are thermal velocities of atoms and 

molecules. 

II, L 

in the Boltzmann equation in an implicit form. 
In other words. Maxwell’s concert (6.1) is nresent 

In case of isotropic correlation 

R,, = R12 = Rx3 = 1 -I.=, 

R12= R13= Rz3= -r(l-r), R=(l-r)‘(l+2r). 

Then, formula (6.3) with account of (6.4) assumes the 

form 

In mathematical statistics the correlation coefficient r 

ranges from - 1 to + 1, but the case may be different 
for a gas system. Extend the range of r through the 

following transformation 

-FL I 

l+r l+r,' 

The parameter b will be different for different gases 
and, in a general case, may be the function of tem- 
perature and density. In order to find its numerical 

values we should apply to the experiment. 

Now the molecular velocity distribution function 
assumes the form 

The latter can be reduced to a canonical form 

through the solution of the third-power equation 
governed by a determinant 

S-l -n -n 

--II S-l - I1 

- n -n S-l 

As far back as in 1896, however, the English scientist 
Burbury pointed out that the presence of rotational 

degrees of freedom in a gas system may lead to corre- 
lation of thermal velocity components [14]. Unfor- 
tunately, this idea did not find the followers since the Here 

problem of temperature estimation arises in the case 
and, hence, the principle of uniform energy distribution 
with respect to the degrees of freedom is violated. 

= 0. 

Predvoditelev was the only one who in the above 
works has introduced the correlation function of mol- 
ecular velocity distribution into the theory of gases 

and suggested a method of temperature estimation 
without violating Boltzmann’s postulates. But at the 
same time he emphasized there that this is not the only 
way to solve the problem. 

Another way to the solution of the above problem 
can also be suggested. 

Indeed, the correlation in thermal velocity com- 
ponents of atoms and molecules leads to the dis- 
tribution function of the following form [lS] 

Here R is correlation determinant, o,, g2, o3 are 

.=YL 
I-?-r, 

The roots of these equations are 

S, = l-2n, SZ = l+n, S3 = l+n. 

Now the canonical form of formula (6.6) is 

- -‘- (S,.‘iSlq*+S3;‘) 
f‘= Ae 20 (6.7) 

It can easily be understood that if rl = 0, 
si = s2 = s3 = 1 and distribution function (6.7) turns 
into the maxwellian function, its last part being a 
particular case. 

Calculate the constant A and mean-square velocity 
of thermal motion 2 through ordinary approaches. 

A = &I s2 S3) 

(r3(27p 
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Assuming no intramoiecuiar forces in accordance 
with the virial theorem developed by Clausius, we 
arrive at 

pv=$K 

where K is mean kinetic energy of a molecule of gas of 
specific volume u. In accordance with our predictions 

K = .!Y!!!~ = 3_Nm$y(r1, j). (6.8) 

Since N is the Avogardo number, the quantity (T 
may be related with temperature after Boltzmann’s 
postulate Nmcr’ = RII: 

Now equation (6.8) may be re-written as 

pv = Y(r, ( /?)RT. (6.9) 

If rl = 0, the latter equality transits into the 
Clayperon equation. 

To solve the above stated problem, we shall interpret 
formula (6.9) as follows. 

Suppose that heat is transferred frontally. Then 
either chemical reactions or phase conversions may 
proceed on the front surface, and the thermal con- 
ductivity determined by (5.16) will fail to level tem- 
perature nonuniformities. 

We have a right to suppose for such a system that 
pressure, density and temperature are related by equa- 
tion (6.9) which is re-written as 

P = ~~Y(~,,~) (6.10) 

where p. is the equilibrium pressure determined by 
Claypeyron formula (5.14). 

Equation (6.10) should be interpreted as an equation 
of nonequilibrium process that controls the pressure 
excess over equilibrium one and results from the 
processes other than heat transfer only by conduction. 

The use of formula (6.10) for transition from (5.12) 
to (5.15) gives 

where n(r) = Vi 0 P)~oV). 

In order to correctly define the quantity A,, in this 
case the pressure p in (5.17) should be determined 
by (6. lo), i.e. 

Now, in spite of the smallness of the quantity zo, 
the coefficient Ai will be finite and, in a general case, 
may be a function of temperature. 

It is easily nndersto~ that equality (6.14) reduces 
to equation (2.14) which is obtained phenomenologi- 
tally. 

As to the case of molecular-kinetic grounds for 
general wave equation (X3), the derivations we have 
made should be considered incomplete. 

Indeed, introduction of the correlation function of 
molecular velocity distribution is equivalent to the 
effect of bygroscopic forces [ 15]. Therefore, to derive 
wave equations of heat transfer, mechanical motions 
similar to latent motions of moving media electro- 
dynamics are necessary. 

We have presented only the beginning of the above 
derivations. 
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LE CONCEPT D’ONDES EN THEORIE DE LA CHALEUR 

RksumQ-On obtient la solution fondamentale classique de l’equation de la conduction thermique sous 
forme dune intkgrale de Poisson en sommant des solutions particulicres de similitude obtenues h t’aide 
d’un groupe de similitude. Ces solutions de similitude ne satisfaisant pas les conditions initiates, on 
obtient alors la condition integrale a partir de laquelle la constante arbitraire de la solution gentrale est 
determinee. On montre ensuite que la solution sous forme d’intcgrale de Poisson satisfait approximative- 
ment la condition initiate sous forme de fonction discontinue en escalier approchant la fonction initiate. 
C’est un des inconvtnients de la solution fondamentale de l’equation classique de la chaleur. 

Le paradoxe de la “vitesse de propagation inhnie de la chaleur” est discuttt. 



Analysant le comportement des isothermes et utilisant le thtoreme de Green, on obtient 1’2quatlon 
g&&ale non-lineaire des ondes dans laquelle la vitesse de propagation des isothermes suivant la normale 
est &Ii&e comme parametre cxp&irncntal. La relation entre cette vitesse et la diffusivitti thermique est 
Ctablie. Lcs diffkrents cas particuliers de cctte equation d’onde sent L:tudil:s. On montre que certaincs 
solutions de I’iquation d’onde correspondent il celles de 1’2quation parabolique non-lin&re. 

L’cquation ondulatoirc de la conduction thcrmique est alors dCduite ;I partir de considCratlons de 
cinltique mol&ulaire. Le concept de temps de relaxation est g2nCralis.C en utilisant la mCthode de Maxwell 
et en tenant compte des corr2lations cntre composantes d’une vitesse thermique des atomes ou molticules. 

WELLENKONZEPT IN DER WARMETHEORIE 

Zusammenfassung,Die bekannte Fundamentallb;sung der Wtirmeleitungsgleichung in Form des Poisson- 
Integrals wird durch Summierung partikularer ;ihnlichkeitslb;sungen erhalten, die aus ;ihnlichkeitsgruppen 
abgeleitet sind. Da diese .&hnlichkeitsl&ungen den Aafangsdaten nicht geniigen. werden Integral- 
bedingungen zugrundegelegt, aus denen die beliebigen Konstanten der allgemeinen LGsung bestimmt 
werden. Damit befriedigt die L&ung in Form des Poisson-Integrals niherungsweise die Anfangs- 
bedingung in Form einer diskontinuierlichen Schrittfunktion als NBherung fiir die Anfangsfunktion. Dies 
ist einer der Nachteile der FundamentallGsung der klassischen Warmeleitungsgleichung. 

Das Paradoxon der unendlichen “WCrme-Fortpflanzungs-Geschwindigkeit” wird diskutiert. 
Aufgrund der Analyse des isothermen Verhaltens und mit Hilfe des Greenschen Theorems wird die 

allgemeine nicht-lineare Wellengleichung abgeleitet, worin die Geschwindigkeit der isothermen Aus- 
breitung in Normalenrichtung als ein experimenteller Parameter verwendet wird. Der Zusammenhang 
zwischen dieser Geschwindigkeit und dem Temperaturleitvermtigen wird gezeigt. Die verschiedenen 
partikullren Falle dieser Wellengleichung werden tmtersucht. Einige der Liisungen korrespondieren mit 
jenen der nicht-linearen parabolischen Gleichung. 

Weiterhin ist die Albeitung der Wellen-Warmeleitungsgleichung aus der Sicht molekular-kinetischer 
iiberlegungen gegeben. Die Vorstellung der Zeitrelaxation ist verallgemeinert unter Benutzung der 
Maxwell-Methode und unter Beriicksichtigung der Beziehungen zwischen den Komponenten einer 

Wirmegeschwindigkeit von Atomen oder Molekiilen. 

BOJIHOBbIE fIPEACTABJIEHM5I B TEOPMM TEIIJIA 

AtmoTauHR- M3BeCrHOe @yHRaMeHTaJIbHOe pelUeHIle ypaaHeHIlS TennOnpOBOIlHOCTH a +OpMe 
MHTerpana nyaCCOHa flOnyYeH0 CyMMMpOBaHAeM YaCTHblX aBTOMOnenbHblX pe2,JeHMfi,nOJIyYeHHblX 
CnOMOUbtO rpynnbl-nono6Hn.TaK KaKTaKHeaBTOMO~enbHblepe~eHllRHey~OBneTBOpa~THaYanb- 
HblM E(aHHblM, TO nOnyYeH0 HHTerpaflbHOe yCnOBHe, H3 KOTOpOrO OnpeJIenReTCR npOH3BOnbHan 
KoHcTaHTa o6tuero pemeHw. ,Qanee noKa3aH0, 'i~o pewefnie B w4fl.e swerpana nyaccoHa ynoene- 
TBOpReT Ha'iaJlbHOMyyCJlOBMH, npH6nMmeHtio B BMDe pa3pblBHO8 CTyneHYaTOfi $yHKUHA annpOKCl4 
MMpyRxUefiHaYaflbHyIO $JYHKUMkO.~TOOllHH H3 HeJlOCTaTKOB+yHJlaMeHTaJlbHOI-OpeIlIeHHJl KJlaCCM 

YeCKOTO YpaBHeHMSl TennOnpOBOnHOCTM. 

06cyxnaeTcfl napanoKc 0 6eCKOHeYHOti ((CKOPOCTI~ pacnpocTpaHeHnn Terma)). 
AHantiwpyR noBeneHRfl H30TepM M nonb3yxb TeopeMoii rpcrHa,apa6oTenaH BbtBon Henwe& 

HOrO BOnHOBOrO ypaBHeHHSl CaMOrO o6uero BHiIa, B KOTOpOM B KaYeCTBe 3KCnepHMeHTaJlbHOr0 
napabterpa wznonb3yeTcn cKopocrb pacnpocTpaHeHm ti30TepMbl no HopManM. YKa3blBaew4 can3b 
3TOfi CKOpOCTH C KOX$@,)MUHeHTOM TeMnepaTypOnpOBOnHOCTk4. k'f3,'YatoTCfl pa3,IHYHble YaCTHble 

C,lyYaM 3TO,-0 BOflHOBOrO ypaBlleHclR. nOKa3aH0, YTO HeKOTOpble ,X",eHW4 BOJHOBOI-0 ypaBHeHk,s 

COO~Be~CTByFXpeWeHHnM HeJWiHefiHOrO napa6onMYecKoro YpaBHeHWl. 

aaXe ,L,aeTCSl BblBOLl BOnHOBOrO ypaBHeHMZ4 TennOnpOBOLlHOCTA t(3 MOneKy,WpHO KHHeTMYeCKHX 
coo6pameHnti. ,$lSI 3TOrO MCnO."b?OBaH MeTOLl MaKCBenna H, yYHTblBaR KOppeJIRIlWO B COCTaBnII- 

muwx Tennosofi cK0p0crM aToM HnM MoneKyn,o606utetto noHxTHe speMeHH penaKcauwi. 


